

IMMORTAL PLAYER CHARACTERS

White Paper V1.0.1 Playchemy, Inc. 19th April, 2018

IPC WhitePaper V1.0 4/​17​/20​1​8

Overview 4
Player Ownership 4
Blockchain Integration 5
Distribution 5

IPC Data 6
IPC ID 6
IPC Age 6
DNA String 6
Attribute String 7
Experience 8
Metadata 8

IPC Marketplace 9
Sell Price 9
Beneficiary 9
ERC-721 Compliance 9

Realms 10
Realm Features 10
Meta-Realms 10
Parallel Play 10
Merchandise 11
Fantasy Realm Example 11
Character Sheet Proof of Concept 12

IPC Developers 13
Interpretation 13
Experiences 13
Developer Verification 13
IPC Ownership Verification 14

Smart Contracts 15
IpcAccessControl 15
IpcReleaseControl 15
ERC165 16
ERC721 16
ERC721Enumerable 16
IpcCreation 16
IpcMarketplace 17

2
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

IpcModification 18
IpcExperience 18
ERC721Metadata 19
IpcCore 19
Contract Code 19

3
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

Immortal Player Characters

Immortal Player Characters (IPCs) are characters that can be played in many
different games. They are stored on the Ethereum blockchain and improve
themselves by gaining experience in games that support the IPC standard.

Overview
Players spend a lot of time in games improving their player characters. The
player accompanies their character on a journey, becomes familiar with its game
world, and gains new experiences. This gaining of experience is often
quantified in games as “leveling-up” the character, which improves the
character in a distinct way. The more time and effort you pour into leveling a
character up, the better it gets. As time goes on, players can get very attached
to their characters.

All games are self-contained. Characters and environments from one game
can’t move to another game. Within a single game is all the programming, game
rules, graphical content, and characters it will ever use. This means that in any
given game, all the time, effort, and money players put into their characters and
account can only enrich the characters and account of that particular game.

Eventually, players stop playing certain games. Sometimes it is merely because
the story has come to an end. Most game companies stop producing more and
more things to do with your character, dooming them to live in a state of limbo.
In the case of online games, if the company shuts down, so do the servers, and
the characters wink out of existence forever.

How many hours and dollars have been lost improving characters only for them
to be abandoned? Players should be able to keep their characters beyond the
game where they first met. Characters should be able to play and explore in
new games. The time, effort, and money put into a character should be
reflected in that character’s value.

This is what Immortal Player Characters enable.

Player Ownership
Until now, the accounts you create, characters you play, and items you earn in
video games have been completely and unquestionably owned by the game

4
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

company. But with IPCs, the ownership is given back to the players.
Ownership is tracked and verified using blockchain technology on the Ethereum
network. Once created, an IPC is assigned to a specific Ethereum wallet
address, meaning the owner of the wallet is the owner of the IPC.

An owner is free to customize and play with their IPCs in any games that
support the IPC standard. Playing with an IPC in games gives it experience
points, adding to its value.

At any time the owner may sell or gift his or her IPC to another person. The
value added to your character can finally add to the value of the player!

Blockchain Integration
The Ethereum network enables IPCs to become truly immortal. All data stored
in the Ethereum network is immutable, which means it cannot be destroyed or
changed once written. Instead, all changes or updates to the data are stored as
transactions on the blockchain. IPC information is stored publicly in a
decentralized smart contract, which is used to enable creation, transfer of
ownership (selling, trading, etc), and leveling up of IPCs, as well as facilitating
the exporting of IPC data into 3​rd​ party games and apps. Because they are
stored on the blockchain, these functions ensure IPCs will live on far beyond any
person or company’s lifetime.

Distribution
The Immortal Player Character Contract distributes IPCs through central
issuance, meaning that IPCs are bought from and originate through the contract
owners. There will be a set USD price for all newly created IPCs. The reason for
doing so is to preserve a standard “buy-in” price for new players. This way, we
ensure we don’t “price out” potential new players.

5
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

IPC Data
What does it mean to be an IPC? What sets one IPC apart from another? When
IPCs are created, they are given an identification number (IPC ID), a time of birth
timestamp, a DNA string, an Attribute string, and an experience counter. This is
the most basic form an IPC can be.

IPC ID
As the name suggests, the IPC ID is used to identify an IPC. IPCs are created
into one dynamic array, and their IPC ID is the index at which they can be found.
The IPC ID of the first IPC (the genesis character) is #1, the next IPC created will
have the IPC ID #2, and so on. The IPC ID is important because it is the way
players load an IPC into different game worlds. A player will provide games with
their IPC’s identification number and the game will use that number to verify
ownership, then load the IPC from the blockchain.

IPC Age
At the moment of its creation, each IPC saves its exact time of birth as a
timestamp. From then on, the IPC’s age can be calculated by subtracting its
birth timestamp from the current time. Games can choose to utilize an IPCs age
in any way they want. For example, in a fantasy game, an older sorcerer might
be able to learn more spells than his or her younger counterpart. The earlier an
IPC was created, the older it will be, making it more powerful and valuable as
time goes on.

DNA String
Players experience a game through its player characters. They are what ground
the player in a game’s world and story. IPCs, however, live outside the context
of any specific game. What does it mean to play as a character that can inhabit
multiple completely different worlds? How can an IPC that is an Elvish wizard in
a fantasy game load into a cartoon game about ponies? What does it mean to
be an elf in one world and a pony in another?

IPC data does not contain any physical traits or characteristics. The blockchain
doesn’t know if the IPC has dark skin or light skin or no skin at all. Instead, each
IPC contains a genetic signature; a string of 32 bytes known as its DNA string.
The DNA string is used as a reference to manifest any characteristic that a
specific game’s world requires. Each individual byte represents a physical trait,
and its value represents a specific variation of that trait. These traits will be
standardized as development finalizes.

6
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

DNA string bytes can represent big things such as race or gender, as well as
small things such as left or right handedness, eye color, or hair length. An IPC
might be born with a rare trait like ambidexterity that automatically makes it
quite valuable for certain games.

An example of DNA string interpretation: Say the fourth and fifth byte of the
32-byte DNA string represent skin and hair color, and the byte-values from 0 to
255 represent spectrums of light to dark skin and hair. If an IPC has the DNA
values 130 and 255, it would have tan skin and black hair. The reason the
blockchain doesn’t just store “tan skin” and “black hair” as fixed values is
because there could be many games where skin and hair need to be interpreted
differently. In a game where the IPC is a pony, these bytes might represent “tan
coat” and “black mane” instead.

This is how an IPC can be both an Elf in Middle Earth, and also a pony in My
Little Pony World. Each game world has a responsibility to interpret the DNA
string in a way that fits its style. This also ensures any given IPC shares
common traits with all versions of itself across many worlds.

Attribute String
How do IPCs differentiate between themselves? In addition to a DNA string that
determines appearance, IPCs are born with a 32-byte Attribute string that
determines their strengths and weaknesses. Like attributes from a tabletop
role-playing game, the attribute string represents a character’s level of ability in
a variety of ways. Each byte of data in the Attribute seed represents an ability
like power, pain tolerance, speed, muscle control, stamina, memory, etc.

Upon creation, the each of these attribute bytes are randomly generated, or
“rolled” like a 6-sided die. Two IPCs might have identical dna, but because of
the differences in their attributes, they would be distinct from one another. The
Attribute string and the DNA string combined make an almost infinite number of
possible IPCs. No two would be alike.

Attribute strings can be used by game developers in creative ways to create
new attributes from component attribute byte-values. For example, in a
tabletop role-playing game, the character’s Dexterity could be composed from
the bytes corresponding to muscle control, speed, and stamina. Or in a game
where an IPC is a doctor, the game developers can create a new attribute called
Surgical Skill, composed of memory, simulation, and muscle control.

In some cases, low attributes might correspond with a stronger IPC. For
example, in a horror game, the developers might create a Sanity attribute that is
the sum of pain tolerance and fortitude, subtracting memory and imagination. In
this case, an IPC with low memory and imagination would be better suited for
this game. Any attribute string has the potential to be valuable.

7
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

This mixing of component attributes allows for an endless number of possible
implementations for game developers to explore.

Experience
What makes a player play games with an IPC? If age, Dna, and Attributes were
the only indicators of value, an IPC that has played through a thousand worlds
would have the same value as an IPC that was never touched. Because of this,
IPCs need a representation of how many experiences they have had; an
experience (XP) counter.

When an IPC plays through a game, it levels up and improves in that game
world, but it also gains XP to be stored on the blockchain. IPCs with very high
XP have seen and done a lot. Like with age, game developers are free to utilize
this XP counter any way they want. For example, an assassin IPC with a lot of
XP might have a better chance of remaining undetected, or an archer IPC with
high XP might have greater accuracy.

IPCs that have experienced more will be more powerful and valuable,
incentivizing players to play more games. This means that IPC players will
always be on the hunt for more games to play, which makes adopting the IPC
standard very tempting for game developers.

Metadata
IPCs store their metadata in an ERC721 JSON Schema on the
immortalplayercharacters.io website. For now, this metadata is composed of
the IPC name and an image. This image represents the most recent
instantiation of the IPC to have been played. For example, an IPC named Bodo
Fraggins plays a fantasy tabletop RPG-style game and his metadata image is of
a hobbit. Then if his owner brings him to play in a different game where
everyone is a race car, Bodo’s metadata image would be of a race car.

8
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

IPC Marketplace
An IPC becomes more powerful the more it experiences and the older it is. An
IPC’s attributes and DNA might make it better than others in some games. But
what does it mean for an IPC to become more valuable? How does its value
manifest itself?

Sell Price
All IPC owners set a sell price for each of their IPCs at which anybody can buy
it. Every IPC can be bought or traded. Players cannot make their IPCs
unbuyable, they can only set their buy price arbitrarily high. This open market is
what bestows all IPCs with value. A better IPC can be listed and sold at a
higher price. Any IPC can gain value with time and effort to be sold at a profit.

Beneficiary
What happens if a player wants to transfer his IPC to a friend for a discount?
IPC owners can list a beneficiary address with a special price for each of their
IPCs. This is so that an IPC could have a high sell price and also have a
discounted price for a friend.

ERC-721 Compliance
What if a third-party cryptocurrency exchange website wants to list IPCs? This
would give IPCs a great deal of exposure.

The IPC smart contract follows and conforms to the ERC-721 standard for
non-fungible tokens (NFT), which is a standardized interface for NFT ownership
and transfers. The inclusion of this in the IPC contract will allow IPCs to be listed
on third-party exchange platforms and third-party NFT wallets.

9
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

Realms
So far players can create, buy and sell IPCs. The next step is to instantiate
them into a realm. Realms are game worlds compliant with the IPC standard.
For example, World of Warcraft, Dungeons and Dragons, and Pokemon could all
have their own IPC realms. Instantiating an IPC into a realm means to interpret
its DNA into a set of features consistent with that world. IPCs can be
instantiated into every existing realm. Realms may exist as standalone games,
or be created as smart contracts that publicly store specific IPC info.

Realm Features
Before they enter their first realm, IPCs are composed of just their age, DNA,
attributes, and experience. But inside a game world, an IPC gains many new
things, all specified by that realm’s developer. An IPC gains a corporeal form
dictated by that realm’s interpretation of its DNA string and gains attributes
dictated by that realm’s interpretation of its attribute string. It might also gain an
inventory of equipment and loot, a character level, a list of skills, abilities, and
spells, a friends list... The sky's the limit when adding features to a realm.
These features are non-transferrable between realms and are called
realm-specific. For example, if a realm were to use a form of currency to buy
things only redeemable in that realm, it would be a realm-specific currency.

Meta-Realms
There may be realm smart contracts that aren’t tied to any specific game or
universe, but instead be a meta-realm that executes an ​idea ​that ties multiple
realms together. For example, there may be a realm that has permanent death
(permadeath). This means that once an IPC dies in this realm, it may no longer
be played in that realm. The information of how many times an IPC has died
can be stored in a meta-realm smart contract, so that all games can know
whether an IPC has died in any permadeath games. A game could, for example,
give the IPC’s avatar a scar for each permadeath he has experienced.

Parallel Play
One aspect of using on-chain realms is that they are not bound to any single
game. Realms exist outside of a game, so that multiple games may use the
features of one realm. The rewards earned from one game might be stored into
that game’s realm, and accessible by other games that also utilize that realm.
This allows for “parallel play” where loot obtained in one game automatically
show up in your inventory for another game. A game doesn’t have to be popular
to bestow value to an IPC. And a new game can piggy-back off a more

10
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

established game by allowing players use their progress in the new game.

Parallel play could enable modders that don’t have the expertise, time, or money
to make a fully featured game to create side-worlds that load data from other
games and provide extra content in the form of more bosses or new areas.

Merchandise
Once an IPC is instantiated into a realm, it has a definite form. Because the IPC
is, at its core, a collectible, owners may want to purchase items that represent
their specific IPC. Initially, collectible cards and 3D printed miniatures of IPCs
will be available for purchase through the ImmortalPlayerCharacters.io website.

Realm creators will be responsible for creating the IPC avatars that will appear
as the IPC’s metadata image.

Fantasy Realm Example
For example, a developer might create a Fantasy Realm. A player provides his
IPC ID to load its properties and discovers that his IPC is a male dwarf.
Because he is one of the oldest IPCs, he has long white hair and a thick braided
beard. The dwarf IPC discovers the skills Mining, Axe Proficiency, Shield
Proficiency, and has the attributes Strength, Dexterity, and Intelligence. The
realm uses his Attribute string to calculate his maximum hit-points and
magic-points. He starts with an empty inventory, except for 100 copper coins, a
realm-specific currency. Because the IPC has 100 XP, he can upgrade one of
his skills right from the start.

Now that there is a realm, there need to be games that utilize it. In this example,
the realm developer might create a Dungeons and Dragons-style game, where
players can load their IPC’s Fantasy Realm avatar and attributes into a
multiplayer tabletop campaign. They let the player keep all their earned
campaign loot and experience by storing it in the Fantasy Realm’s inventory.
Each campaign may also provide characters with campaign-specific items,
which do not register inside the realm’s inventory. At the end of a campaign, the
IPCs that participated each get an experience point.

A second developer creates a separate game that is a player-vs-player (PvP)
battle tournament. The tournament game reads from the Fantasy Realm’s IPC
inventories and allows players to “buy in” using either 1000 copper or the
equivalent value in loot. The winner gets to keep all the loot and the money.
The Fantasy Realm attributes are loaded, as well as any relevant skills and
spells, and the Fantasy Realm IPCs are matched up and battle each other. The
mechanics of the battles are entirely decided by the developer.

11
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

Character Sheet Proof of Concept
What does an IPC’s DNA and Attributes look like when instantiated into a realm?
The following is an example character sheet of a fantasy game realm. The DNA
is interpreted into race, gender, etc, and attributes are interpreted into strength,
dexterity, etc.

12
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

IPC Developers
When a player buys an IPC, their first thought is “what can I play?”. When there
are thousands of IPC owners all looking for games to play, the few games that
are available draw a lot of attention. Discoverability is something that a lot of
game developers struggle with, and that is what the IPC standard can provide.
So what does a developer need to do to have their game available to IPC
owners?

Interpretation
It is meaningless for an IPC to be playing in a game but that game not utilize any
interpretation of the IPC’s DNA or attributes. If an IPC becomes Luke Skywalker
no matter what, then it doesn’t matter if the IPC is tall or short, or strong or
weak. Games that are available to IPCs need to reinforce a player’s character
by making it recognizable. Even something as simple as making the in-game
character’s hair color derived from the IPC’s DNA can be enough to make a
character distinct and recognizable as a specific IPC.

Experiences
Because the IPC contract is public, any developer can instantiate an IPC into
their game and have it be playable by its owner. But for this play to have
meaning, it needs to be documentable in the IPC contract. Having earnable
experiences provides a record of that IPC’s play in a developer’s game.
Developers that provide more experiences that are easier to achieve
immediately make their game more desirable to new players. However,
because the logging of XP is done on the blockchain, there is an inherent cost to
gifting experiences. This creates a natural balance between how much
developers are willing to spend on acquiring new players and how many
experiences they can create.

Developer Verification
The experience-gifting system has the potential for exploitation, so there is a
verification process for a game developer to become a registered developer for
IPCs. The verification process checks that the game developer has an
interpretation system in place, and requires the developer to update the IPC’s
metadata image automatically when the IPC is loaded into the game. After a
developer is verified, he or she can create any number of experiences on the
IPC contract for players to earn. Experiences must follow some rules:
Unobtainable experiences are not allowed, experiences must be awarded on the
contract if they are earned in the game, and vice versa, experiences may not be

13
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

awarded to IPCs that have not earned the experience in the game. Any violation
of these rules and the developer will lose their IPC developer status.

IPC Ownership Verification
It is important that IPCs are only playable by their owners, so developers that
want to use IPCs need a way to verify IPC ownership. Playchemy Inc will
provide a login service for players to verify their owned IPCs, and will eventually
develop a metamask-style plugin for Unity to read the blockchain. IPC
developers will need to either use these systems or utilize something similar in
order to make sure players don’t have access to IPCs they don’t own.

14
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

Smart Contracts

Immortal Player Character blockchain functionality is divided into interfaces and
contract segments in a chain of inheritance.

IpcAccessControl

The IpcAccessControl contract segment is derived from the Ownable contract
by OpenZeppelin. IpcGod replaces Ownable’s Owner, and three more address
types are defined. IPC functions are divided into 5 levels of access: ipcGod,
ipcExec, ipcAdmin, ipcDeveloper, and Public.

IpcGod is able to execute all functions and change the addresses associated
with all levels of access. IpcGod, like Owner, can relinquish its access to another
address using the relinquishGodhood function.

IpcExec is the address with the next-highest clearance. IpcExec can make
top-level changes such as pricing and changing tranche variables, as well as
releasing new tranches. IpcExec is in charge of the vetting and supervision of
IpcAdmins and IpcDevelopers.

IpcAdmins are stored in a list of addresses. More admins can be created by
ipcExec or ipcGod, and likewise, admin access can be revoked. Admins have
access to remote IPC creation and modification. This is so that off-chain users
can still have access to the world of IPCs.

IpcDevelopers are stored in an (address=>bool) mapping; an address is either a
registered developer or it is not. IpcDevelopers have access to the functions
outlined in the IpcExperience contract segment; Experience creation and gifting.

Every function not restricted to the above access levels is publicly accessible to
anyone.

IpcReleaseControl

Inherits IpcAccessControl
IPCs are released in batches called tranches. The IpcReleaseControl contract
segment manages new IPC creation by keeping track of the number and price

15
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

of the IPCs released per tranche, as well as dictating when the next tranche gets
released.

ERC165
ERC165 is an interface used to query whether the IPC contract ​supports the
interface and, if yes, which version of the interface. This allows an external
source to adapt the way in which the IPC contract is interfaced. This is so future
changes to an interface standard does not necessarily require the IPC contract
to make any changes.

ERC721
The ERC721 interface follows and conforms to the ERC-721 standard for
non-fungible tokens (NFT). It is a standardized interface for NFT ownership and
transfers. The inclusion of this contract segment will allow IPCs to be listed on
third-party exchange platforms and third-party NFT wallets.

ERC721Enumerable
The ERC721Enumerable interface allows the tokens outlined in the ERC721
interface to be counted and queried. This is not included for tokens that require
privacy, but IPCs are public.

IpcCreation

Inherits IpcReleaseControl, ERC165, ERC721, and ERC721Enumerable.

The IpcCreation contract segment defines all ownership data structures and
handles all IPC creation. It is also where the Immortal Player Character itself is
defined. Because this is the first segment that contains payable functions, the
MarketPrice dollar to ether conversion interface is defined here.

USD to ETH conversion is handled by an external contract which is updated
every 10 minutes to reflect the latest USD to ETH conversion rate. All prices
defined in the IPC contract is in USD.

16
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

The Ipc struct is the essence of an IPC. It contains a name, a 32-byte string of
dna, a 32-byte attributeSeed, an experience counter, and a time of birth integer.

Randomized creation of an IPC costs the least, and IPCs created with this
function have their attributeSeeds and DNA randomized.

IPC seed creation gives players IPCs which have their timeOfBirth,
attributeSeed, and dna member variables set to 0. These seeds cannot be used
in many ipc-related protocols.

IPC Seeds have the option of being “substantiated” with a custom dna string.
This can be done before or after attributes are generated. Attributes are always
randomized. This is to allow a player to have his dna inspired by his attributes.

Random number generation is done by concatenating the sender’s address, the
block’s timestamp, and a nonce that is incremented each time the random
number generator is called. The concatenated result is run through the
keccak256 hashing algorithm. This process will generate a pseudo-random
number that is impossible to determine ahead of time.

IPCs are pushed into an array of all existing IPCs. A separate (uint=>address)
ipcToOwner mapping is used to store IPC ownership. In order to look up a
specific address’s owned IPCs is done off-chain by iterating through the entire
list of IPCs and checking the address against their owners. This is done in a
view-restricted tokensOfOwner(_address) function. Calculating this off-chain
greatly reduces the gas cost of transferring ownership.

IpcMarketplace

Inherits IpcCreation.

The IpcMarketplace contract segment stores the IPC ownership transfer
functions as well as the owner-chosen pricing information for each IPC.
Transfers can be done in three different ways: transfer, approval /
takeOwnership, and buyIpc.

The ERC-721 standard requires a transfer(address _to, uint _tokenId) function,
as well as an approval / takeOwnership system which protects against IPCs
getting sent to incorrect addresses. The preferred way of transferring ownership
is the buyIpc(uint _ipcId, uint _newPrice) function which takes the IPC from its
owner without need for approval, as long as enough ether is sent with the
function call.

IPC pricing information is stored in a IpcMarketInfo struct. The struct contains
one address where a beneficiary may be set with a special beneficiary price.

17
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

This is so that transfers between friends or accounts can be done safely without
the need for the ERC-721 transfer functions. The struct also contains an
approval address which approves a single address to take ownership of the IPC
for nothing in return. This is included in order to be ERC-721 compliant.

Players can set the prices and special addresses for their IPCs using public
function calls, or by requesting these done by an admin.

IpcModification

Inherits IpcMarketplace.

The IpcModification contract segment handles the modification of IPC names
and their DNA. These can be changed by IPC owners through a public function
call or by an admin. Changing DNA requires a price be paid for each increment
or decrement of a DNA byte.

An example of DNA modification:

0xf141b2c55c​a1​6dc00019d3feb6527f4b22edf0a139f66313dd2fff0b1ea0c768

The sixth byte in the dna string might represent skin tone with a value of 0x00
being the fairest and 0xFF being the darkest. The sixth byte in the example dna
string is underlined as a1, or 161 in decimal. If the owner of this IPC wanted his
skin tone to be as light as possible, he would have to pay 161 times the price to
modify DNA to decrement the dna byte 161 times.

IpcExperience

Inherits IpcModification.

IpcExperience is the contract segment where IpcDeveloper functions are defined. This
layer includes experience creation, the purchasing of XP, and functions to grant XP to
IPCs.

Experiences are goals that developers set for their players to try and achieve.
Developers register these experiences to the IPC contract by function call with a string
description of the experience. These experiences can be awarded to an IPC as XP,
increasing that IPC’s XP counter, which affect the IPC in realm-specific ways.

XP is a currency-type ownable by developers with the single purpose of granting
to IPCs. Developers may grant XP as rewards for in-game achievements. Each
XP gained by an IPC represents one experience from a developer. An IPC may
only be granted one XP per experience.

18
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

To grant XP, developers must buy XP from the IPC contract. The IpcExperience
counter tracks each developer’s xpBalance.

The purpose of granting XP is for a developer to gain discoverability by
rewarding players that try their game. This is counteracted by each XP having a
cost associated with it, so developers can’t endlessly grant XP. IPC owners are
incentivized to keep trying new IPC-integrated games, which benefits both the
players and developers.

ERC721Metadata
The Metadata interface allows external web3 sources to query token name and
image through a standardized ERC721 URI format. This allows 3rd party dapps
to be able to display the correct IPC image and name next to the owned IPC.

IpcCore
Inherits IpcExperience, and ERC721Metadata.

The IpcCore contract segment is the final layer of the IPC contract, and provides
the IPC interface for which external contracts or dapps can read IPC data. There
is a single public function getIpc(uint _ipcId) which returns all the data inside the
IPC’s struct.

This layer contains the constructor function for the contract, which sets the
ipcGod address and the MarketPlace external contract address. The first
tranche is initialized here.

This layer also provides a pointer for an updated IPC contract if ever the IPC
contract needs to hard fork.

Contract Code

pragma solidity ^0.4.19;

//--

/// @title IPC Access Control

/// @dev defines access modifiers for God, Exec, Admin, and Developer access

19
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

pragma​ ​solidity​ ^0.4.19;

//--

/// @title IPC Access Control

/// @dev defines access modifiers for God, Exec, Admin, and Developer access

/// defines functions to assign access levels to addresses. To avoid conflicts

/// of interest, an address with any of these levels of access cannot own IPCs.

//--

contract​ ​IpcAccessControl​ {

 ​address​ ipcGod; ​// Assigns Exec, Admin, and Cashier addresses

 ​address​ ipcExec; ​// Manages top-level variable modification

 ​address​ ipcCashier; ​// Address to where money is sent

 ​mapping​ (​uint​=>​address​) indexToAdmin; ​// list of admin-level access

 ​mapping​ (​address​=>​bool​) ipcDeveloper; ​// developer-level access

 ​uint​ totalAdmins;

 ​uint​ ​public​ totalDevelopers;

 ​bool​ locked; ​// protects against re-entrancy attacks

 ​modifier​ onlyIpcGod​() {

 ​require​ (​msg​.sender == ipcGod);

 _;

 }

 ​modifier​ onlyExecOrHigher​() {

 ​require​ (​msg​.sender == ipcExec || ​msg​.sender == ipcGod);

 _;

 }

 ​modifier​ onlyAdminOrHigher​() {

 ​require​ (​_checkIfAdmin​(​msg​.sender) || ​msg​.sender == ipcExec || ​msg​.sender ==

ipcGod);

 _;

 }

 ​modifier​ onlyDeveloper​() {

 ​require​(ipcDeveloper[​msg​.sender]);

 _;

 }

 ​modifier​ noHigherAccess​(​address​ _address) {

 ​require​(​_checkIfAdmin​(_address) == ​false​ &&

 _address != ipcExec &&

20
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 _address != ipcGod);

 _;

 }

 ​// protects payable functions against re-entrancy attacks

 ​modifier​ noReentrancy​() {

 ​require​(!locked);

 locked = ​true​;

 _;

 locked = ​false​;

 }

 ​//--

 ​// FUNCTIONS - high to low clearance

 ​//--

 ​function​ renounceGodhood​(​address​ _newGod) ​external​ onlyIpcGod {

 ipcGod = _newGod;

 }

 ​function​ setExec​(​address​ _newExec) ​external​ onlyIpcGod {

 ipcExec = _newExec;

 }

 ​function​ setCashier​(​address​ _newCashier) ​external​ onlyIpcGod {

 ipcCashier = _newCashier;

 }

 ​function​ addAdmin​(​address​ _newAdmin) ​external​ onlyExecOrHigher {

 indexToAdmin[totalAdmins] = _newAdmin;

 totalAdmins++;

 }

 ​function​ removeAdmin​(​address​ _adminToRemove) ​external​ onlyExecOrHigher {

 ​for​ (​uint​ i = ​0​; i < totalAdmins; ++i) {

 ​if​ (indexToAdmin[i] == _adminToRemove) {

 ​if​ (i != totalAdmins - ​1​) {

 ​address​ swapAddress = indexToAdmin[totalAdmins - ​1​];

 indexToAdmin[i] = swapAddress;

 }

 totalAdmins--;

 }

 }

21
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 }

 ​function​ getAllPositions​() ​external​ ​view​ onlyExecOrHigher ​returns​ (​address​[]) {

 ​address​[] ​memory​ positions = ​new​ ​address​[](totalAdmins + ​3​);

 positions[​0​] = ipcGod;

 positions[​1​] = ipcExec;

 positions[​2​] = ipcCashier;

 ​for​ (​uint​ i = ​3​; i < positions.length; ++i) {

 positions[i] = indexToAdmin[i];

 }

 ​return​ positions;

 }

 ​function​ getAdmins​() ​external​ ​view​ onlyAdminOrHigher ​returns​ (​address​[]) {

 ​address​[] ​memory​ admins = ​new​ ​address​[](totalAdmins);

 ​for​ (​uint​ i = ​0​; i < totalAdmins; ++i) {

 admins[i] = indexToAdmin[i];

 }

 ​return​ admins;

 }

 ​function​ changeDeveloperStatus​(​address​ developer, ​bool​ value) ​external

onlyExecOrHigher {

 ​require​(ipcDeveloper[developer] != value);

 ​if​ (value == ​true​) {

 totalDevelopers++;

 } ​else​ {

 totalDevelopers--;

 }

 ipcDeveloper[developer] = value;

 }

 ​// withdraws money somehow stuck in the contract

 ​function​ withdraw​() ​external​ onlyAdminOrHigher {

 ipcCashier.​transfer​(​address​(​this​).balance);

 }

 ​function​ _checkIfAdmin​(​address​ _address) ​internal​ ​view​ ​returns​(​bool​) {

 ​for​(​uint​ i = ​0​; i < totalAdmins; ++i){

 ​if​ (_address == indexToAdmin[i]) {

 ​return​ ​true​;

 }

22
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 }

 ​return​ ​false​;

 }

}

//--

/// @title IPC Release Control

/// @dev Keeps track of the number and price of the IPCs released per tranche

/// and dictates when the next tranche gets released

//--

contract​ ​IpcReleaseControl​ ​is​ IpcAccessControl {

 ​bool​ autoTrancheRelease = ​true​; ​// whether tranches release by themselves

 ​uint128​ ​public​ totalIpcs; ​// all ipcs in existence

 ​uint​ trancheSize = ​1000​; ​// number of IPCs to be created per release

 ​uint​ ipcCap; ​// equal to previous ipcCap + trancheSize

 ​uint​ priceIncreasePerTrancheInCents = ​1​; ​// how much more each IPC costs per

tranche

 ​uint​ ​public​ ipcPriceInCents = ​25​;

 ​function​ changeTrancheSize​(​uint​ _newSize) ​external​ onlyExecOrHigher {

 ​require​ (_newSize > ​0​);

 trancheSize = _newSize;

 }

 ​function​ changePriceIncreasePerTranche​(​uint​ _newPriceIncrease) ​external

onlyExecOrHigher {

 priceIncreasePerTrancheInCents = _newPriceIncrease;

 }

 ​function​ releaseNewTranche​() ​public​ {

 ​if​(autoTrancheRelease == ​false​) {

 ​require​ (​msg​.sender == ipcExec || ​msg​.sender == ipcGod);

 }

 ​require​(totalIpcs >= ipcCap);

 ipcCap += trancheSize;

 ipcPriceInCents += priceIncreasePerTrancheInCents;

 }

 ​function​ setAutoTrancheRelease​(​bool​ value) ​external​ onlyExecOrHigher {

 autoTrancheRelease = value;

23
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 }

}

//--

/// @title ERC-165 Standard Interface Detection

/// @dev see https://github.com/ethereum/EIPs/blob/master/EIPS/eip-165.md

/// Note: the ERC-165 identifier for this interface is 0x01ffc9a7

//--

interface​ ​ERC165​ {

 ​/// @notice Query if a contract implements an interface

 ​/// @param _interfaceId The interface identifier, as specified in ERC-165

 ​/// @dev Interface identification is specified in ERC-165. This function

 ​/// uses less than 30,000 gas.

 ​/// @return `true` if the contract implements `interfaceId` and

 ​/// `interfaceId` is not 0xffffffff, `false` otherwise

 ​function​ supportsInterface​(​bytes4​ _interfaceId) ​external​ ​view​ ​returns​ (​bool​);

}

//--

/// @title ERC-721 Non-Fungible Token Standard

/// @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

/// Note: the ERC-165 identifier for this interface is 0x6466353c

//--

interface​ ​ERC721​ {

 ​// Events

 ​/// @dev This emits when ownership of any NFT changes by any mechanism.

 ​/// This event emits when NFTs are created (`from` == 0) and destroyed

 ​/// (`to` == 0). Exception: during contract creation, any number of NFTs

 ​/// may be created and assigned without emitting Transfer. At the time of

 ​/// any transfer, the approved address for that NFT (if any) is reset to none.

 ​event​ Transfer​(​address​ ​indexed​ _from, ​address​ ​indexed​ _to, ​uint256​ ​indexed

_tokenId);

 ​/// @dev This emits when the approved address for an NFT is changed or

 ​/// reaffirmed. The zero address indicates there is no approved address.

 ​/// When a Transfer event emits, this also indicates that the approved

 ​/// address for that NFT (if any) is reset to none.

 ​event​ Approval​(​address​ ​indexed​ _owner, ​address​ ​indexed​ _approved, ​uint256​ ​indexed

_tokenId);

24
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​/// @dev This emits when an operator is enabled or disabled for an owner.

 ​/// The operator can manage all NFTs of the owner.

 ​event​ ApprovalForAll​(​address​ ​indexed​ _owner, ​address​ ​indexed​ _operator, ​bool

_approved);

 ​/// @notice Count all NFTs assigned to an owner

 ​/// @dev NFTs assigned to the zero address are considered invalid, and this

 ​/// function throws for queries about the zero address.

 ​/// @param _owner An address for whom to query the balance

 ​/// @return The number of NFTs owned by `_owner`, possibly zero

 ​function​ balanceOf​(​address​ _owner) ​external​ ​view​ ​returns​ (​uint256​ balance);

 ​/// @notice Find the owner of an NFT

 ​/// @param _tokenId The identifier for an NFT

 ​/// @dev NFTs assigned to zero address are considered invalid, and queries

 ​/// about them do throw.

 ​/// @return The address of the owner of the NFT

 ​function​ ownerOf​(​uint256​ _tokenId) ​external​ ​view​ ​returns​ (​address​ owner);

 ​/// @notice Transfers the ownership of an NFT from one address to another address

 ​/// @dev Throws unless `msg.sender` is the current owner, an authorized

 ​/// operator, or the approved address for this NFT. Throws if `_from` is

 ​/// not the current owner. Throws if `_to` is the zero address. Throws if

 ​/// `_tokenId` is not a valid NFT. When transfer is complete, this function

 ​/// checks if `_to` is a smart contract (code size > 0). If so, it calls

 ​/// `onERC721Received` on `_to` and throws if the return value is not

 ​/// `bytes4(keccak256("onERC721Received(address,uint256,bytes)"))`.

 ​/// @param _from The current owner of the NFT

 ​/// @param _to The new owner

 ​/// @param _tokenId The NFT to transfer

 ​/// @param data Additional data with no specified format, sent in call to `_to`

 ​function​ safeTransferFrom​(​address​ _from, ​address​ _to, ​uint256​ _tokenId, ​bytes

data) ​external​ ​payable​;

 ​/// @notice Transfers the ownership of an NFT from one address to another address

 ​/// @dev This works identically to the other function with an extra data

parameter,

 ​/// except this function just sets data to []

 ​/// @param _from The current owner of the NFT

 ​/// @param _to The new owner

 ​/// @param _tokenId The NFT to transfer

 ​function​ safeTransferFrom​(​address​ _from, ​address​ _to, ​uint256​ _tokenId) ​external

25
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

payable​;

 ​/// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE

 ​/// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE

 ​/// THEY MAY BE PERMANENTLY LOST

 ​/// @dev Throws unless `msg.sender` is the current owner, an authorized

 ​/// operator, or the approved address for this NFT. Throws if `_from` is

 ​/// not the current owner. Throws if `_to` is the zero address. Throws if

 ​/// `_tokenId` is not a valid NFT.

 ​/// @param _from The current owner of the NFT

 ​/// @param _to The new owner

 ​/// @param _tokenId The NFT to transfer

 ​function​ transferFrom​(​address​ _from, ​address​ _to, ​uint256​ _tokenId) ​external

payable​;

 ​/// @notice Set or reaffirm the approved address for an NFT

 ​/// @dev The zero address indicates there is no approved address.

 ​/// @dev Throws unless `msg.sender` is the current NFT owner, or an authorized

 ​/// operator of the current owner.

 ​/// @param _approved The new approved NFT controller

 ​/// @param _tokenId The NFT to approve

 ​function​ approve​(​address​ _approved, ​uint256​ _tokenId) ​external​ ​payable​;

 ​/// @notice Enable or disable approval for a third party ("operator") to manage

 ​/// all your asset.

 ​/// @dev Emits the ApprovalForAll event

 ​/// @param _operator Address to add to the set of authorized operators.

 ​/// @param _approved True if the operators is approved, false to revoke approval

 ​function​ setApprovalForAll​(​address​ _operator, ​bool​ _approved) ​external​;

 ​/// @notice Get the approved address for a single NFT

 ​/// @dev Throws if `_tokenId` is not a valid NFT

 ​/// @param _tokenId The NFT to find the approved address for

 ​/// @return The approved address for this NFT, or the zero address if there is

none

 ​function​ getApproved​(​uint256​ _tokenId) ​external​ ​view​ ​returns​ (​address​);

 ​/// @notice Query if an address is an authorized operator for another address

 ​/// @param _owner The address that owns the NFTs

 ​/// @param _operator The address that acts on behalf of the owner

 ​/// @return True if `_operator` is an approved operator for `_owner`, false

otherwise

26
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​function​ isApprovedForAll​(​address​ _owner, ​address​ _operator) ​external​ ​view​ ​returns

(​bool​);

}

//--

/// @title ERC-721 Non-Fungible Token Standard, optional enumeration extension

/// @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

/// Note: the ERC-165 identifier for this interface is 0x780e9d63

//--

interface​ ​ERC721Enumerable​ ​/* is ERC721 */​ {

 ​/// @notice Count NFTs tracked by this contract

 ​/// @return A count of valid NFTs tracked by this contract, where each one of

 ​/// them has an assigned and queryable owner not equal to the zero address

 ​function​ totalSupply​() ​external​ ​view​ ​returns​ (​uint256​);

 ​/// @notice Enumerate valid NFTs

 ​/// @dev Throws if `_index` >= `totalSupply()`.

 ​/// @param _index A counter less than `totalSupply()`

 ​/// @return The token identifier for the `_index`th NFT,

 ​/// (sort order not specified)

 ​function​ tokenByIndex​(​uint256​ _index) ​external​ ​view​ ​returns​ (​uint256​);

 ​/// @notice Enumerate NFTs assigned to an owner

 ​/// @dev throws if __owner is the zero address

 ​/// @param _owner An address to query for owned NFTs

 ​/// @return The token identifiers for all NFTs assigned to _owner in order of

creation

 ​function​ tokensOfOwner​(​address​ _owner) ​external​ ​view​ ​returns​ (​uint256​[]);

 ​/// @notice Get the token Id of the '_index'th NFT assigned to an owner

 ​/// @dev Throws if `_index` >= `balanceOf(_owner)` or if

 ​/// `_owner` is the zero address, representing invalid NFTs.

 ​/// @param _owner An address where we are interested in NFTs owned by them

 ​/// @param _index A counter less than `balanceOf(_owner)`

 ​/// @return The token identifier for the `_index`th NFT assigned to `_owner`

 ​function​ tokenOfOwnerByIndex​(​address​ _owner, ​uint256​ _index) ​external​ ​view​ ​returns

(​uint256​ _tokenId);

}

/// @title Metadata extension to ERC-721 interface

27
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

/// @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

/// Note: the ERC-165 identifier for this interface is 0x5b5e139f

interface​ ​ERC721Metadata​ {

 ​/// @dev ERC-165 (draft) interface signature for ERC721

 ​// bytes4 internal constant INTERFACE_SIGNATURE_ERC721Metadata = // 0x2a786f11

 ​// bytes4(keccak256('name()')) ^

 ​// bytes4(keccak256('symbol()')) ^

 ​// bytes4(keccak256('deedUri(uint256)'));

 ​/// @notice A descriptive name for a collection of deeds managed by this

 ​/// contract

 ​/// @dev Wallets and exchanges MAY display this to the end user.

 ​function​ name​() ​external​ ​pure​ ​returns​ (​string​ _name);

 ​/// @notice An abbreviated name for deeds managed by this contract

 ​/// @dev Wallets and exchanges MAY display this to the end user.

 ​function​ symbol​() ​external​ ​pure​ ​returns​ (​string​ _symbol);

 ​/// @notice A distinct URI (RFC 3986) for a given token.

 ​/// @dev If:

 ​/// * The URI is a URL

 ​/// * The URL is accessible

 ​/// * The URL points to a valid JSON file format (ECMA-404 2nd ed.)

 ​/// * The JSON base element is an object

 ​/// then these names of the base element SHALL have special meaning:

 ​/// * "name": A string identifying the item to which `_tokenId` grants

 ​/// ownership

 ​/// * "description": A string detailing the item to which `_tokenId` grants

 ​/// ownership

 ​/// * "image": A URI pointing to a file of image/* mime type representing

 ​/// the item to which `_tokenId` grants ownership

 ​/// Wallets and exchanges MAY display this to the end user.

 ​/// Consider making any images at a width between 320 and 1080 pixels and

 ​/// aspect ratio between 1.91:1 and 4:5 inclusive.

 ​function​ tokenURI​(​uint256​ _tokenId) ​external​ ​view​ ​returns​ (​string​);

}

//--

/// @title Coin Market Price Smart Contract

/// @dev see https://github.com/hunterlong/marketprice/blob/master/README.md

28
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

/// Updates every 2 hours

//--

interface​ ​MarketPrice​ {

 ​function​ ETH​(​uint​ _id) ​external​ ​constant​ ​returns​ (​uint256​);

 ​function​ USD​(​uint​ _id) ​external​ ​constant​ ​returns​ (​uint256​);

 ​function​ EUR​(​uint​ _id) ​external​ ​constant​ ​returns​ (​uint256​);

 ​function​ GBP​(​uint​ _id) ​external​ ​constant​ ​returns​ (​uint256​);

 ​function​ updatedAt​(​uint​ _id) ​external​ ​constant​ ​returns​ (​uint​);

}

//--

/// @title IPC Creation

/// @dev Defines all ownership data structures and handles all IPC creation

/// defines ERC-721 Enumerable's ownership queries

//--

contract​ ​IpcCreation​ ​is​ IpcReleaseControl, ERC165, ERC721, ERC721Enumerable {

 ​/// @dev This emits when an IPC is created by any mechanism. Exception:

 ​/// during contract creation in the event of an update, existing IPCs

 ​/// will be created and assigned without emitting Created.

 ​event​ Created​(​uint​ tokenId, ​address​ ​indexed​ owner, ​string​ name);

 ​/// @dev This emits when an IPC is fully substantiated with dna, attributes,

 ​/// and a time of birth.

 ​event​ Substantiated​(​uint​ tokenId, ​bytes32​ dna, ​bytes32​ attributes);

 ​/// @dev This emits when an IPC's dna is modified

 ​event​ DnaModified​(​uint​ ​indexed​ tokenId, ​bytes32​ to);

 ​// currency converter

 MarketPrice priceConverter;

 ​// contains all IPC information

 ​struct​ Ipc​ {

 ​string​ name;

 ​bytes32​ attributeSeed;

 ​bytes32​ dna;

 ​uint128​ experience;

 ​uint128​ timeOfBirth;

 }

29
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 Ipc[] ​public​ Ipcs; ​// array of IPCs

 ​mapping​ (​uint​ => ​address​) ​public​ ipcToOwner; ​// IPC to owner address

 ​mapping​ (​address​ => ​uint​) ​public​ ownerIpcCount; ​// how many IPCs an address

owns

 ​mapping​ (​uint​ => ​uint​) ipcSeedToCustomizationPrice; ​// the price to customize an

IPC seed

 ​mapping​ (​uint​ => ​bool​) ipcToAdminAuthorization; ​// whether or not an admins

can modify IPC

 ​uint​ ​public​ customizationPriceMultiplier = ​4​;

 ​uint​ nonce = ​0​;

 ​modifier​ onlyOwnerOrAdmin​(​uint​ _costInCents, ​uint​ _ipcId) {

 ​uint​ costInWei = ​_convertCentsToWei​(_costInCents);

 ​require​ (

 ​msg​.sender == ipcToOwner[_ipcId] && ​msg​.value >= costInWei ||

 (ipcToAdminAuthorization[_ipcId] &&

 (​_checkIfAdmin​(​msg​.sender) ||

 ​msg​.sender == ipcExec ||

 ​msg​.sender == ipcGod))

);

 _;

 }

 ​// forward declaration

 ​function​ setIpcPrice​(​uint​ _ipcId, ​uint​ _newPrice) ​public​ ​onlyOwnerOrAdmin​(​0​,

_ipcId);

 ​//--

 ​// IPC ADMIN FUNCTIONS

 ​//--

 ​function​ changeCustomizationMultiplier​(​uint​ _newMultiplier) ​external

onlyExecOrHigher {

 customizationPriceMultiplier = _newMultiplier;

 }

 ​function​ updateMarketPriceContract​(​address​ _newAddress) ​external​ onlyExecOrHigher

{

 priceConverter = ​MarketPrice​(_newAddress);

 }

30
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​function​ createAndAssignRandomizedIpc​(

 ​string​ _name,

 ​uint​ _price,

 ​address​ _owner

) ​external​ onlyAdminOrHigher ​noHigherAccess​(_owner) {

 ​require​(​bytes​(_name).length <= ​32​ && totalIpcs < ipcCap);

 ​_makeIpc​(_price, _owner, _name, ​_generateRandomNumber​(),

_generateRandomNumber​(), ​uint128​(​now​));

 ​emit​ ​Substantiated​(totalIpcs, Ipcs[totalIpcs - ​1​].dna, Ipcs[totalIpcs -

1​].attributeSeed);

 ​if​ (totalIpcs >= ipcCap && autoTrancheRelease) {

 ​releaseNewTranche​();

 }

 }

 ​function​ createAndAssignIpcSeed​(

 ​string​ _name,

 ​uint​ _price,

 ​address​ _owner

) ​external​ onlyAdminOrHigher ​noHigherAccess​(_owner) {

 ​require​(​bytes​(_name).length <= ​32​ && totalIpcs < ipcCap);

 ​_makeIpc​(_price, _owner, _name, ​0​, ​0​, ​0​);

 ipcSeedToCustomizationPrice[totalIpcs] = ipcPriceInCents *

customizationPriceMultiplier;

 ​if​ (totalIpcs >= ipcCap && autoTrancheRelease) {

 ​releaseNewTranche​();

 }

 }

 ​//--

 ​// USER FUNCTIONS

 ​//--

 ​/// @notice Create a fully substantiated IPC with randomized attributes and dna

 ​/// @dev Throws if name is longer than 32 bytes. Throws if msg.value is too low.

 ​/// Throws if msg.sender is an admin, ipcExec, or ipcGod.

 ​/// @param _name Name to assign to the IPC. The longer the name, the more gas

needed

 ​/// @param _price Initial buy price for the IPC. Price calculated in USD cents.

 ​function​ createRandomizedIpc​(

 ​string​ _name,

 ​uint​ _price

31
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

) ​external​ ​payable​ noReentrancy ​noHigherAccess​(​msg​.sender) {

 ​require​(​bytes​(_name).length <= ​32​ && totalIpcs < ipcCap);

 ​uint​ ipcPriceInWei = ​_convertCentsToWei​(ipcPriceInCents);

 ​require​ (​msg​.value >= ipcPriceInWei);

 ​_makeIpc​(_price, ​msg​.sender, _name, ​_generateRandomNumber​(),

_generateRandomNumber​(), ​uint128​(​now​));

 ​emit​ ​Substantiated​(totalIpcs, Ipcs[totalIpcs - ​1​].dna, Ipcs[totalIpcs -

1​].attributeSeed);

 ​msg​.sender.​transfer​(​msg​.value - ipcPriceInWei);

 ipcCashier.​transfer​(ipcPriceInWei);

 ​if​ (totalIpcs >= ipcCap && autoTrancheRelease) {

 ​releaseNewTranche​();

 }

 }

 ​/// @notice Create an unsubstantiated IPC Seed with no attributes or dna

 ​/// @dev Throws if name is longer than 32 bytes. Throws if msg.value is too low.

 ​/// Throws if msg.sender is an admin, ipcExec, or ipcGod.

 ​/// @param _name Name to assign to the IPC. The longer the name, the more gas

needed

 ​/// @param _price Initial buy price for the IPC. Price calculated in USD cents.

 ​function​ createIpcSeed​(

 ​string​ _name,

 ​uint​ _price

) ​external​ ​payable​ noReentrancy ​noHigherAccess​(​msg​.sender) {

 ​require​(​bytes​(_name).length <= ​32​ && totalIpcs < ipcCap);

 ​uint​ ipcPriceInWei = ​_convertCentsToWei​(ipcPriceInCents);

 ​require​ (​msg​.value >= ipcPriceInWei);

 ​_makeIpc​(_price, ​msg​.sender, _name, ​0​, ​0​, ​0​);

 ipcSeedToCustomizationPrice[totalIpcs] = ipcPriceInCents *

customizationPriceMultiplier;

 ​msg​.sender.​transfer​(​msg​.value - ipcPriceInWei);

 ipcCashier.​transfer​(ipcPriceInWei);

 ​if​ (totalIpcs >= ipcCap && autoTrancheRelease) {

 ​releaseNewTranche​();

 }

 }

 ​/// @notice Rolls attributes on an IPC Seed. Does not substantiate.

 ​/// @dev Throws unless `msg.sender` is the current owner or an authorized IPC

administrator.

 ​/// Throws if attributes were already rolled.

32
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​/// @param _ipcId IPC Identifier to roll attributes

 ​function​ rollAttributes​(​uint​ _ipcId) ​external​ ​onlyOwnerOrAdmin​(​0​, _ipcId) {

 Ipc ​storage​ myIpc = Ipcs[_ipcId - ​1​];

 ​require​ (myIpc.attributeSeed == ​0​); ​// can only roll attributes once

 myIpc.attributeSeed = ​_generateRandomNumber​();

 }

 ​/// @notice Rolls custom dna on an IPC Seed. If attributes not rolled, roll

attributes. Substantiates.

 ​/// @dev Throws unless `msg.sender` is the current owner or an authorized IPC

administrator.

 ​/// Throws if msg.value is too low. Throws if IPC is already substantiated.

 ​/// @param _ipcId IPC Identifier for IPC to customize DNA

 ​/// @param _dna A custom bytes32

 ​function​ customizeDna​(

 ​uint​ _ipcId,

 ​bytes32​ _dna

) ​public​ ​payable​ noReentrancy

onlyOwnerOrAdmin​(ipcSeedToCustomizationPrice[_ipcId], _ipcId) {

 Ipc ​storage​ myIpc = Ipcs[_ipcId - ​1​];

 ​require​ (myIpc.timeOfBirth == ​0​);

 myIpc.timeOfBirth = ​uint128​(​now​);

 myIpc.dna = _dna;

 ​if​ (myIpc.attributeSeed == ​0​) {

 myIpc.attributeSeed = ​_generateRandomNumber​();

 }

 ​emit​ ​Substantiated​(totalIpcs, Ipcs[totalIpcs - ​1​].dna, Ipcs[totalIpcs -

1​].attributeSeed);

 ​msg​.sender.​transfer​(​msg​.value - ipcSeedToCustomizationPrice[_ipcId]);

 ipcCashier.​transfer​(ipcSeedToCustomizationPrice[_ipcId]);

 }

 ​/// @notice Rolls randomized dna on an IPC Seed. If attributes not rolled,

 ​/// rolls attributes. Substantiates.

 ​/// @dev Throws unless `msg.sender` is the current owner or an authorized IPC

administrator.

 ​/// Throws if IPC is already substantiated.

 ​/// @param _ipcId IPC Identifier for IPC to randomize DNA

 ​function​ randomizeDna​(​uint​ _ipcId) ​external​ ​onlyOwnerOrAdmin​(​0​, _ipcId) {

 Ipc ​storage​ myIpc = Ipcs[_ipcId - ​1​];

 ​require​ (myIpc.timeOfBirth == ​0​);

 myIpc.timeOfBirth = ​uint128​(​now​);

33
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 myIpc.dna = ​_generateRandomNumber​();

 ​if​ (myIpc.attributeSeed == ​0​) {

 myIpc.attributeSeed = ​_generateRandomNumber​();

 }

 ​emit​ ​Substantiated​(totalIpcs, Ipcs[totalIpcs - ​1​].dna, Ipcs[totalIpcs -

1​].attributeSeed);

 }

 ​/// @notice Changes whether or not an admin is authorized to make changes to an

IPC

 ​function​ changeAdminAuthorization​(​uint​ _ipcId, ​bool​ _authorization) ​external

onlyOwnerOrAdmin​(​0​, _ipcId) {

 ipcToAdminAuthorization[_ipcId] = _authorization;

 }

 ​//--

 ​// ERC-721 FUNCTIONS

 ​//--

 ​function​ totalSupply​() ​external​ ​view​ ​returns​ (​uint​) {

 ​return​ totalIpcs;

 }

 ​function​ tokenByIndex​(​uint​ _index) ​external​ ​view​ ​returns​ (​uint​) {

 ​require​ (_index < totalIpcs);

 ​return​ _index + ​1​; ​// IPC ID is ALWAYS index + 1

 }

 ​function​ balanceOf​(​address​ _owner) ​external​ ​view​ ​returns​ (​uint​) {

 ​require​ (_owner != ​0​);

 ​return​ ownerIpcCount[_owner];

 }

 ​function​ tokensOfOwner​(​address​ _owner) ​external​ ​view​ ​returns​ (​uint​[]) {

 ​require​(ownerIpcCount[_owner] > ​0​);

 ​uint​ counter = ​0​;

 ​uint​[] ​memory​ result = ​new​ ​uint​[](ownerIpcCount[_owner]);

 ​for​ (​uint​ i = ​1​; i <= Ipcs.length; i++) {

 ​if​(ipcToOwner[i] == _owner) {

 result[counter] = i;

 counter++;

 }

 }

34
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​return​ result;

 }

 ​function​ tokenOfOwnerByIndex​(​address​ _owner, ​uint​ _index) ​external​ ​view​ ​returns

(​uint​) {

 ​require​ (_index <= ownerIpcCount[_owner]);

 ​uint​ counter = ​0​;

 ​for​ (​uint​ i = ​0​; i < Ipcs.length; i++) {

 ​if​ (ipcToOwner[i] == _owner) {

 ​if​ (counter == _index) {

 ​return​ i;

 } ​else​ {

 counter++;

 }

 }

 }

 }

 ​function​ ownerOf​(​uint​ _tokenId) ​external​ ​view​ ​returns​ (​address​ owner) {

 owner = ipcToOwner[_tokenId];

 }

 ​//--

 ​// INTERNAL FUNCTIONS

 ​//--

 ​function​ _generateRandomNumber​() ​internal​ ​returns​ (​bytes32​) {

 nonce++;

 ​return​ ​keccak256​(​now​, ​msg​.sender, nonce);

 }

 ​function​ _makeIpc​(

 ​uint​ _price,

 ​address​ _owner,

 ​string​ _name,

 ​bytes32​ _dna,

 ​bytes32​ _attributeSeed,

 ​uint128​ _timeOfBirth

) ​internal​ {

 ​uint​ id = Ipcs.​push​(​Ipc​(_name, _attributeSeed, _dna, ​0​, _timeOfBirth));

 ipcToOwner[id] = _owner;

 ownerIpcCount[_owner]++;

 ipcToAdminAuthorization[id] = ​true​; ​// default admin access

35
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​setIpcPrice​(id, _price);

 ​emit​ ​Created​(id, _owner, _name);

 ​emit​ ​Transfer​(​0​, _owner, id); ​// send the Transfer event

 totalIpcs++;

 }

 ​function​ _convertCentsToWei​(​uint​ centsAmount) ​internal​ ​view​ ​returns​(​uint​) {

 ​uint​ ethCent = priceConverter.​USD​(​0​); ​// $0.01 worth of wei

 ​return​ (ethCent * centsAmount); ​// centsAmount worth of wei

 }

}

/// @dev Note: the ERC-165 identifier for this interface is 0xf0b9e5ba

interface​ ​ERC721TokenReceiver​ {

 ​/// @notice Handle the receipt of an NFT

 ​/// @dev The ERC721 smart contract calls this function on the recipient

 ​/// after a `transfer`. This function MAY throw to revert and reject the

 ​/// transfer. This function MUST use 50,000 gas or less. Return of other

 ​/// than the magic value MUST result in the transaction being reverted.

 ​/// Note: the contract address is always the message sender.

 ​/// @param _from The sending address

 ​/// @param _tokenId The NFT identifier which is being transfered

 ​/// @param data Additional data with no specified format

 ​/// @return `bytes4(keccak256("onERC721Received(address,uint256,bytes)"))`

 ​/// unless throwing

 ​function​ onERC721Received​(​address​ _from, ​uint256​ _tokenId, ​bytes​ data) ​external

returns​(​bytes4​);

}

//--

/// @title IPC Marketplace

/// @dev Defines ownership transfer functions and owner-chosen pricing information.

/// Transfers can be done in three different ways: safeTransferFrom, transferFrom,

/// and buyIpc.

//--

contract​ ​IpcMarketplace​ ​is​ IpcCreation {

 ​/// @dev Emits whenever an IPC is bought using the buyIpc function

 ​event​ Bought​(​uint​ ​indexed​ _tokenId, ​address​ _seller, ​address​ ​indexed​ _buyer, ​uint

price);

36
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​/// @dev Emits whenever the price of an IPC changes. Does not emit for beneficiary

price change

 ​event​ PriceChanged​(​uint​ ​indexed​ _tokenId, ​uint​ from, ​uint​ to);

 ​struct​ IpcMarketInfo​ {

 ​uint32​ sellPrice;

 ​uint32​ beneficiaryPrice;

 ​address​ beneficiaryAddress;

 ​address​ approvalAddress; ​// used for ERC721-required approval and

takeOwnership functions

 }

 ​mapping​ (​uint​ => IpcMarketInfo) ​public​ ipcToMarketInfo;

 ​mapping​ (​address​ => ​mapping​ (​address​ => ​bool​)) ownerToOperator;

 ​uint​ ​public​ maxIpcPrice = ​100000000​; ​// 1 million

 ​function​ setMaxIpcPrice​(​uint​ _newPrice) ​external​ onlyExecOrHigher {

 maxIpcPrice = _newPrice;

 }

 ​/// @notice Change the sell price of an owned IPC

 ​/// @dev throws unless msg.sender is the owner of the IPC or an IPC administrator

 ​/// @param _ipcId The IPC Identifier for the IPC whose price is changing

 ​/// @param _newPrice The new price for the IPC

 ​function​ setIpcPrice​(​uint​ _ipcId, ​uint​ _newPrice) ​public​ ​onlyOwnerOrAdmin​(​0​,

_ipcId) {

 ​uint​ from = ipcToMarketInfo[_ipcId].sellPrice;

 ​if​ (_newPrice > maxIpcPrice) {

 _newPrice = maxIpcPrice;

 }

 ipcToMarketInfo[_ipcId].sellPrice = ​uint32​(_newPrice);

 ​emit​ ​PriceChanged​(_ipcId, from, _newPrice);

 }

 ​/// @notice Gives a beneficiary address a discounted or inflated price.

 ​/// @dev There may only be one beneficiary at a time. Throws unless msg.sender

 ​/// is the owner of the IPC or an approved IPC administrator.

 ​/// @param _ipcId The IPC Identifier for the IPC to approve a beneficiary

 ​/// @param _beneficiaryAddress The beneficiary's wallet address

 ​/// @param _beneficiaryPrice The special price for the beneficiary

 ​function​ setSpecialPriceForAddress​(

37
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​uint​ _ipcId,

 ​address​ _beneficiaryAddress,

 ​uint​ _beneficiaryPrice

) ​external​ ​onlyOwnerOrAdmin​(​0​, _ipcId) {

 ipcToMarketInfo[_ipcId].beneficiaryPrice = ​uint32​(_beneficiaryPrice);

 ipcToMarketInfo[_ipcId].beneficiaryAddress = _beneficiaryAddress;

 }

 ​/// @notice Obtains ownership of an ipc. Must send at least the buyout price.

 ​/// @dev Throws unless _ipcId is valid. Throws if msg.value is too low.

 ​/// Buying sets beneficiaryAddress to 0 address. Emits Transfer event. Emits

 ​/// Bought event.

 ​/// @param _ipcId The IPC Identifier for the IPC to be bought

 ​/// @param _newPrice The new price of the IPC once bought

 ​function​ buyIpc​(​uint​ _ipcId, ​uint​ _newPrice) ​public​ ​payable​ noReentrancy {

 ​require​(_ipcId > ​0​ && _ipcId <= totalIpcs);

 IpcMarketInfo ​storage​ ipcToBuy = ipcToMarketInfo[_ipcId];

 ​uint​ priceInCents;

 ​uint​ priceInWei;

 ​if​ (​msg​.sender == ipcToBuy.beneficiaryAddress) {

 priceInCents = ipcToBuy.beneficiaryPrice;

 } ​else​ {

 priceInCents = ipcToBuy.sellPrice;

 }

 priceInWei = ​_convertCentsToWei​(priceInCents);

 ​require​ (​msg​.value >= priceInWei);

 ​address​ seller = ipcToOwner[_ipcId];

 ​_transferOwnership​(​msg​.sender, seller, _ipcId);

 ​emit​ ​Bought​(_ipcId, seller, ​msg​.sender, priceInCents); ​// send buy event

 ipcToBuy.sellPrice = ​uint32​(_newPrice);

 ​msg​.sender.​transfer​(​msg​.value - priceInWei); ​// send the excess value back

 seller.​transfer​(priceInWei); ​// send the rest to the seller

 }

 ​//--

 ​// ERC721-required transfer functions

 ​//--

 ​function​ safeTransferFrom​(

 ​address​ _from,

 ​address​ _to,

 ​uint256​ _tokenId,

38
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​bytes​ data

) ​external​ ​payable​ ​noHigherAccess​(_to) {

 ​require​ (

 ​msg​.sender == ipcToOwner[_tokenId] || ​// IPC owner

 ​msg​.sender == ipcToMarketInfo[_tokenId].approvalAddress || ​// Approved

address

 ownerToOperator[ipcToOwner[_tokenId]][​msg​.sender] == ​true​ ​// Approved

operator

);

 ​require​ (_tokenId != ​0​ && _tokenId <= totalIpcs);

 ​require​ (_from == ipcToOwner[_tokenId]);

 ​require​ (_to != ​0​);

 ​if​ (​msg​.sender == ipcToMarketInfo[_tokenId].approvalAddress) {

 ​require​ (_to == ​msg​.sender);

 }

 ​_transferOwnership​(_to, _from, _tokenId);

 ​if​ (​_isContract​(_to)) {

 ERC721TokenReceiver tokenReceiver = ​ERC721TokenReceiver​(_to);

 ​bytes4​ returnValue = tokenReceiver.​onERC721Received​(_from, _tokenId,

data);

 ​require​ (returnValue ==

bytes4​(​keccak256​(​"onERC721Received(address,uint256,bytes)"​)));

 }

 }

 ​function​ safeTransferFrom​(

 ​address​ _from,

 ​address​ _to,

 ​uint256​ _tokenId

) ​external​ ​payable​ ​noHigherAccess​(_to) {

 ​require​ (

 ​msg​.sender == ipcToOwner[_tokenId] || ​// IPC owner

 ​msg​.sender == ipcToMarketInfo[_tokenId].approvalAddress || ​// Approved

address

 ownerToOperator[ipcToOwner[_tokenId]][​msg​.sender] == ​true​ ​// Approved

operator

);

 ​require​ (_tokenId != ​0​ && _tokenId <= totalIpcs);

 ​require​ (_from == ipcToOwner[_tokenId]);

 ​require​ (_to != ​0​);

 ​if​ (​msg​.sender == ipcToMarketInfo[_tokenId].approvalAddress) {

 ​require​ (_to == ​msg​.sender);

39
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 }

 ​bytes​ ​memory​ data;

 ​_transferOwnership​(_to, _from, _tokenId);

 ​if​ (​_isContract​(_to)) {

 ERC721TokenReceiver tokenReceiver = ​ERC721TokenReceiver​(_to);

 ​bytes4​ returnValue = tokenReceiver.​onERC721Received​(_from, _tokenId,

data);

 ​require​ (returnValue ==

bytes4​(​keccak256​(​"onERC721Received(address,uint256,bytes)"​)));

 }

 }

 ​function​ transferFrom​(

 ​address​ _from,

 ​address​ _to,

 ​uint256​ _tokenId

) ​external​ ​payable​ ​noHigherAccess​(_to) {

 ​require​ (

 ​msg​.sender == ipcToOwner[_tokenId] || ​// IPC owner

 ​msg​.sender == ipcToMarketInfo[_tokenId].approvalAddress || ​// Approved

address

 ownerToOperator[ipcToOwner[_tokenId]][​msg​.sender] == ​true​ ​// Approved

operator

);

 ​require​ (_tokenId != ​0​ && _tokenId <= totalIpcs);

 ​require​ (_from == ipcToOwner[_tokenId]);

 ​require​ (_to != ​0​);

 ​if​ (​msg​.sender == ipcToMarketInfo[_tokenId].approvalAddress) {

 ​require​ (_to == ​msg​.sender);

 }

 ​_transferOwnership​(_to, _from, _tokenId);

 }

 ​function​ approve​(​address​ _to, ​uint256​ _tokenId) ​external​ ​payable​ {

 ​require​ (_tokenId <= totalIpcs && ​msg​.sender == ipcToOwner[_tokenId]);

 ipcToMarketInfo[_tokenId].approvalAddress = _to;

 ​emit​ ​Approval​(​msg​.sender, _to, _tokenId); ​// send the Approval event

 }

 ​function​ setApprovalForAll​(​address​ _operator, ​bool​ _approved) ​external​ {

 ownerToOperator[​msg​.sender][_operator] = _approved;

 ​emit​ ​ApprovalForAll​(​msg​.sender, _operator, _approved); ​// send the

40
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

ApprovalForAll event

 }

 ​function​ getApproved​(​uint256​ _tokenId) ​external​ ​view​ ​returns​ (​address​) {

 ​require​(_tokenId != ​0​ && _tokenId <= totalIpcs);

 ​return​ ipcToMarketInfo[_tokenId].approvalAddress;

 }

 ​function​ isApprovedForAll​(​address​ _owner, ​address​ _operator) ​external​ ​view​ ​returns

(​bool​) {

 ​return​ ownerToOperator[_owner][_operator];

 }

 ​function​ _transferOwnership​(​address​ _to, ​address​ _from, ​uint256​ _tokenId) ​internal

{

 ownerIpcCount[_from]--; ​// remove IPC from seller's list of owned

 ipcToOwner[_tokenId] = _to; ​// change owner to buyer

 ipcToMarketInfo[_tokenId].beneficiaryAddress = ​0​; ​// remove any beneficiary

 ​if​(ipcToMarketInfo[_tokenId].approvalAddress != ​0​) {

 ​emit​ ​Approval​(​msg​.sender, ​0​, _tokenId);

 ipcToMarketInfo[_tokenId].approvalAddress = ​0​; ​// remove any pending

approval

 }

 ownerIpcCount[_to]++; ​// add IPC to buyer's list of owned

 ​emit​ ​Transfer​(_from, _to, _tokenId); ​// send the Transfer event

 }

 ​function​ _isContract​(​address​ addr) ​private​ ​view​ ​returns​ (​bool​) {

 ​uint​ size;

 ​assembly​ { size := ​extcodesize​(addr) }

 ​return​ size > ​0​;

 }

}

//--

/// @title IPC Modification

/// @dev Handles modification of IPC names and DNA

//--

contract​ ​IpcModification​ ​is​ IpcMarketplace {

 ​/// @dev Emits whenever the name of an IPC is changed. Emits on IPC creation.

41
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​event​ NameChanged​(​uint​ ​indexed​ _tokenId, ​string​ _to);

 ​uint​ ​public​ priceToModifyDna = ​100​;

 ​uint​ ​public​ priceToChangeName = ​100​;

 ​uint​ ​public​ dnaModificationLevelRequirement = ​1000000​;

 ​uint​ ​public​ nameModificationLevelRequirement = ​1​;

 ​modifier​ levelRequirement​(​uint​ _req, ​uint​ _ipcId) {

 ​require​(Ipcs[_ipcId - ​1​].experience >= _req);

 _;

 }

 ​function​ changeDnaModificationLevelRequirement​(​uint​ _newReq) ​external

onlyExecOrHigher {

 dnaModificationLevelRequirement = _newReq;

 }

 ​function​ changeNameModificationLevelRequirement​(​uint​ _newReq) ​external

onlyExecOrHigher {

 nameModificationLevelRequirement = _newReq;

 }

 ​function​ changePriceToModifyDna​(​uint​ _newPrice) ​public​ onlyExecOrHigher {

 priceToModifyDna = _newPrice;

 }

 ​/// @notice Changes the name of an IPC

 ​/// @dev Throws unless msg.sender is the IPC's owner or an authorized

administrator.

 ​/// Throws if msg.value is too low. Throws if _newName is longer than 32 bytes.

 ​/// Throws if IPC's experience is too low. Emits the NameChanged event.

 ​/// @param _ipcId The IPC Identifier for the IPC whose name will be changed.

 ​/// @param _newName Set the IPC's name to this string.

 ​function​ changeIpcName​(

 ​uint​ _ipcId,

 ​string​ _newName

) ​public​ ​payable

 noReentrancy

 ​onlyOwnerOrAdmin​(priceToChangeName, _ipcId)

 ​levelRequirement​(nameModificationLevelRequirement, _ipcId)

 {

 ​require​(​bytes​(_newName).length <= ​32​);

42
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​uint​ index = _ipcId - ​1​;

 Ipcs[index].name = _newName;

 ​emit​ ​NameChanged​(_ipcId, _newName);

 ​if​ (​msg​.sender == ipcToOwner[_ipcId]) {

 ​uint​ price = ​_convertCentsToWei​(priceToChangeName);

 ​msg​.sender.​transfer​(​msg​.value - price);

 ipcCashier.​transfer​(price);

 }

 }

 ​/// @notice Changes a specific byte of an IPC's dna by an amount. The price

 ​/// scales with modification amount.

 ​/// @dev Throws unless msg.sender is the IPC's owner or an authorized

administrator.

 ​/// Throws if msg.value is too low. Throws if _byteToModify is greater than 31.

 ​/// Throws unless _ipcId is a valid IPC. Throws if modifying the _byteToModify by

 ​/// _modifyAmount overflows or underflows the byte value. Emits the DnaModified

event.

 ​/// @param _ipcId The IPC Identifier for the IPC whose DNA will be modified

 ​/// @param _byteToModify The index of the byte to modify. Must be less than 32

 ​/// @param _modifyAmount The amount by which to increase or decrease the DNA byte

value

 ​function​ modifyDna​(

 ​uint​ _ipcId,

 ​uint​ _byteToModify,

 ​int​ _modifyAmount

) ​public​ ​payable

 noReentrancy

 ​levelRequirement​(dnaModificationLevelRequirement, _ipcId)

 {

 ​// check enough money was sent

 ​uint​ costInWei;

 ​if​(_modifyAmount < ​0​) {

 costInWei = ​_convertCentsToWei​(priceToModifyDna * ​uint​(_modifyAmount *

-​1​));

 ​require​ (

 ​_checkIfAdmin​(​msg​.sender) ||

 (​msg​.sender == ipcToOwner[_ipcId] && ​msg​.value >= costInWei)

);

 } ​else​ {

 costInWei = ​_convertCentsToWei​(priceToModifyDna * ​uint​(_modifyAmount));

 ​require​ (

43
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​_checkIfAdmin​(​msg​.sender) ||

 (​msg​.sender == ipcToOwner[_ipcId] && ​msg​.value >= costInWei)

);

 }

 Ipc ​storage​ myIpc = Ipcs[_ipcId - ​1​];

 ​// requirements

 ​require​ (_ipcId < totalIpcs && myIpc.timeOfBirth != ​0​); ​// require valid IPC

 ​require​ (_byteToModify < ​32​); ​// require valid byte index (0-31)

 ​// calculate new dna value

 ​require​ (​int​(myIpc.dna[_byteToModify]) + _modifyAmount < ​256​ &&

 ​int​(myIpc.dna[_byteToModify]) + _modifyAmount >= ​0​);

 ​int​ newDnaValue = ​int​(myIpc.dna[_byteToModify]) + _modifyAmount;

 ​// construct an array of bytes as new dna

 ​bytes​ ​memory​ newDna = ​new​ ​bytes​(​32​);

 ​for​ (​uint​ i = ​0​; i < ​32​; ++i) {

 ​if​ (i == _byteToModify) {

 newDna[i] = ​byte​(newDnaValue);

 } ​else​ {

 newDna[i] = myIpc.dna[i];

 }

 }

 ​// convert the array of bytes into a fixed-size bytes32 array

 ​bytes32​ tempDnaBytes32;

 ​assembly​ {

 tempDnaBytes32 := ​mload​(​add​(newDna, ​32​))

 }

 ​// set ipc dna to modified dna value

 myIpc.dna = tempDnaBytes32;

 ​// send event

 ​emit​ ​DnaModified​(_ipcId, tempDnaBytes32);

 ​// send money

 ​if​ (​msg​.sender == ipcToOwner[_ipcId]) {

 ​msg​.sender.​transfer​(​msg​.value - costInWei);

 ipcCashier.​transfer​(costInWei);

 }

 }

44
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

}

//--

/// @title IPC Experience

/// @dev Defines developer functions: experience creation, purchasing of XP, and

/// functions to grant XP to IPCs.

//--

contract​ ​IpcExperience​ ​is​ IpcModification {

 ​/// @dev This emits any time an IPC is gifted an XP by a developer

 ​event​ ExperienceEarned​(​uint​ ​indexed​ tokenId, ​address​ ​indexed​ developer, ​uint

indexed​ xpId);

 ​struct​ Developer​ {

 ​uint32​ experienceCount;

 ​uint32​ xpBalance;

 ​string​ name;

 }

 ​// contains information about a specific achievable experience

 ​struct​ Experience​ {

 ​address​ developer;

 ​string​ description;

 }

 ​// stores the developer info

 ​mapping​ (​address​ => Developer) addressToDeveloper;

 ​// stores whether an IPC has been granted xp for a specific experience

 ​mapping​ (​uint​ => ​mapping​(​uint​ => ​bool​)) ​public​ ipcIdToExperience;

 ​// array of all experiences

 Experience[] ​public​ experiences;

 ​// pricing data

 ​uint​ xpPriceInCents = ​1​;

 ​function​ changeXpPrice​(​uint​ _newAmount) ​public​ onlyExecOrHigher {

 xpPriceInCents = _newAmount;

 }

 ​function​ setDeveloperName​(​address​ _address, ​string​ _name) ​external

onlyAdminOrHigher {

 ​require​ (_address != ​0​ && ipcDeveloper[_address]);

45
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 addressToDeveloper[_address].name = _name;

 }

 ​//--

 ​// DEVELOPER FUNCTIONS

 ​//--

 ​/// @notice Grants xp to ipc

 ​/// @dev Throws if developer XP balance is 0. Throws if developer not

 ​/// the experience's owner. Throws if the IPC is not substantiated. Throws

 ​/// if IPC already earned the experience. Emits ExperienceEarned event.

 ​/// @param _ipcId The IPC Identifier for the IPC receiving the XP

 ​/// @param _xpId The XP Identifier for the experience given

 ​function​ grantXpToIpc​(​uint​ _ipcId, ​uint​ _xpId) ​public​ onlyDeveloper {

 Ipc ​storage​ ipc = Ipcs[_ipcId - ​1​];

 ​require​ (

 addressToDeveloper[​msg​.sender].xpBalance > ​0​ &&

 experiences[_xpId].developer == ​msg​.sender &&

 ipc.timeOfBirth != ​0​ &&

 ipcIdToExperience[_ipcId][_xpId] == ​false

);

 ipcIdToExperience[_ipcId][_xpId] = ​true​;

 ipc.experience++;

 addressToDeveloper[​msg​.sender].xpBalance--;

 ​emit​ ​ExperienceEarned​(_ipcId, ​msg​.sender, _xpId);

 }

 ​/// @notice Grants XP to multiple IPCs. Costs significantly less gas than

one-by-one.

 ​/// @dev Throws if developer's XP balance is too low to complete the operation.

 ​/// Throws if arrays are not equal in length. Checks each IPC against each

experience.

 ​/// If valid, grants the XP. If not, continues to the next IPC and XP.

 ​/// It is up to the caller to make sure the IPC and XP arrays align correctly.

 ​/// @param _ipcIdArray An array of IPC Identifiers for the IPCs to receive XP

 ​/// @param _xpIdArray An array of XP to grant to IPCs.

 ​function​ grantBulkXp​ (​uint​[] _ipcIdArray, ​uint​[] _xpIdArray) ​public​ onlyDeveloper

{

 ​require​(addressToDeveloper[​msg​.sender].xpBalance >= _ipcIdArray.length &&

 _ipcIdArray.length == _xpIdArray.length);

 ​for​ (​uint​ i = ​0​; i < _ipcIdArray.length; ++i) {

 ​if​ (

 addressToDeveloper[​msg​.sender].xpBalance > ​0​ &&

46
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 experiences[_xpIdArray[i]].developer == ​msg​.sender &&

 Ipcs[_ipcIdArray[i]].timeOfBirth != ​0​ &&

 ipcIdToExperience[_ipcIdArray[i]][_xpIdArray[i]] == ​false

) {

 ipcIdToExperience[_ipcIdArray[i]][_xpIdArray[i]] = ​true​;

 Ipcs[_ipcIdArray[i] - ​1​].experience++;

 ​emit​ ​ExperienceEarned​(_ipcIdArray[i], ​msg​.sender, _xpIdArray[i]);

 }

 }

 addressToDeveloper[​msg​.sender].xpBalance -= ​uint32​(_ipcIdArray.length);

 }

 ​/// @notice Developer-only function to purchase Experience Points

 ​/// @dev Sends the developer however many experience points his msg.value

 ​/// can afford. Sends the remainder back to the buyer. Throws if sender is

 ​/// not a developer.

 ​function​ buyXp​() ​external​ ​payable​ onlyDeveloper noReentrancy {

 ​uint​ xpPriceInWei = ​_convertCentsToWei​(xpPriceInCents);

 ​uint​ xpBought = ​msg​.value / xpPriceInWei;

 addressToDeveloper[​msg​.sender].xpBalance += ​uint32​(xpBought);

 ipcCashier.​transfer​(xpPriceInWei * xpBought);

 ​msg​.sender.​transfer​(​msg​.value - (xpPriceInWei * xpBought));

 }

 ​/// @notice Registers a new experience into the idToExperience mapping

 ​/// @dev Throws if the sender is not a developer. The longer the _description

 ​/// the more gas this function costs. If the description is very long

 ​/// it is recommended to store a metadata uri conforming to RFC3986 syntax

 ​/// described here https://tools.ietf.org/html/rfc3986

 ​/// @param _description String describing the experience

 ​function​ registerNewExperience​(​string​ _description) ​external​ onlyDeveloper

returns​(​uint​) {

 ​uint​ experienceId = experiences.​push​(​Experience​ (​msg​.sender, _description)) -

1​;

 addressToDeveloper[​msg​.sender].experienceCount++;

 ​return​ experienceId;

 }

 ​/// @notice Invalidates an existing Experience

 ​/// @dev Sets the experience's developer to the 0 address, which makes the

 ​/// experience impossible to access. If the experience needs to be reactivated

 ​/// it needs to be created as a new experience.

47
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​/// @param _xpId The Experience Identifier for the Experience to remove

 ​function​ removeExperience​(​uint​ _xpId) ​external​ onlyDeveloper {

 ​require​ (experiences[_xpId].developer == ​msg​.sender);

 addressToDeveloper[​msg​.sender].experienceCount--;

 experiences[_xpId].developer = ​0​;

 }

 ​/// @notice Developer-only getter that returns XP price in cents

 ​/// @dev Throws if msg.sender is not a developer

 ​function​ getXpPrice​() ​external​ ​view​ onlyDeveloper ​returns​ (​uint​) {

 ​return​ xpPriceInCents;

 }

 ​/// @notice Developer-only getter that returns their XP balance

 ​/// @dev Throws if msg.sender is not a developer

 ​function​ getXpBalance​() ​external​ ​view​ onlyDeveloper ​returns​ (​uint​) {

 ​return​ addressToDeveloper[​msg​.sender].xpBalance;

 }

 ​/// @notice Public getter that shows all the Experiences owned by a developer

 ​/// @dev Throws if the developer owns no Experiences.

 ​/// @param _developer The address to search for owned Experiences.

 ​/// @return An array of Experience Identifiers owned by _developer

 ​function​ experiencesOfDeveloper​(​address​ _developer) ​external​ ​view​ ​returns​ (​uint​[])

{

 ​uint​ counter = addressToDeveloper[_developer].experienceCount;

 ​require​(counter > ​0​);

 ​uint​[] ​memory​ result = ​new​ ​uint​[](counter);

 ​for​ (​uint​ i = ​0​; i < Ipcs.length; i++) {

 result[counter] = i;

 }

 ​return​ result;

 }

}

//--

// IPC CORE

// - provides the IPC interface for which external contracts or dapps can read IPC

data

//--

contract​ ​IpcCore​ ​is​ IpcExperience, ERC721Metadata {

48
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​address​ ​public​ mostCurrentIpcAddress = ​address​(​this​);

 ​mapping​ (​bytes4​ => ​bool​) supportedInterfaces;

 ​string​ ipcUrl;

 ​// Constructor - called once and only once when contract is created

 ​function​ IpcCore​() ​public​ {

 ipcGod = ​msg​.sender;

 ipcCap = trancheSize;

 supportedInterfaces[​0x01ffc9a7​] = ​true​; ​// ERC-165

 supportedInterfaces[​0x6466353c​] = ​true​; ​// ERC-721

 supportedInterfaces[​0x780e9d63​] = ​true​; ​// ERC721Enumerable

 supportedInterfaces[​0xf0b9e5ba​] = ​true​; ​// ERC721TokenReceiver

 supportedInterfaces[​0x5b5e139f​] = ​true​; ​// ERC721Metadata

 ipcUrl = ​"https://www.immortalplayercharacters.com/ipc/"​;

 ​//priceConverter = MarketPrice(0x2138FfE292fd0953f7fe2569111246E4DE9ff1DC);

// main

 priceConverter = ​MarketPrice​(​0x97d63Fe27cA359422C10b25206346B9e24A676Ca​); ​//

testnet

 }

 ​function​ updateIpcContract​(​address​ _newAddress) ​external​ onlyExecOrHigher {

 mostCurrentIpcAddress = _newAddress;

 }

 ​function​ updateIpcUrl​(​string​ _newUrl) ​external​ onlyExecOrHigher {

 ipcUrl = _newUrl;

 }

 ​function​ addSupportedInterface​(​bytes4​ _newInterfaceId) ​external​ onlyExecOrHigher {

 supportedInterfaces[_newInterfaceId] = ​true​;

 }

 ​function​ removeSupportedInterface​(​bytes4​ _interfaceId) ​external​ onlyExecOrHigher {

 supportedInterfaces[_interfaceId] = ​false​;

 }

 ​/// @notice Returns all ipc stats to the caller.

 ​/// @dev note: If the caller was an external contract, Ipc.name will be

49
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

unreadable.

 ​/// @param _ipcId The IPC Identifier for the IPC to be read

 ​/// @return name, attributeSeed, dna, experience, and timeOfBirth of an IPC

 ​function​ getIpc​(​uint​ _ipcId) ​external​ ​view​ ​returns​ (

 ​string​ name,

 ​bytes32​ attributeSeed,

 ​bytes32​ dna,

 ​uint128​ experience,

 ​uint128​ timeOfBirth

) {

 Ipc ​storage​ ipc = Ipcs[_ipcId - ​1​];

 name = ipc.name;

 experience = ipc.experience;

 attributeSeed = ipc.attributeSeed;

 dna = ipc.dna;

 timeOfBirth = ipc.timeOfBirth;

 }

 ​/// @notice Converts name to bytes32 for external contract use.

 ​/// @dev returns a bytes32 containing the IPCs name followed by 0s. If the

 ​/// IPCs name ends with 0s they will be indistinguishable from the 0s added

 ​/// by this method.

 ​/// @param _ipcId The IPC Identifier for the IPC whose name is being looked up

 ​/// @return byte32 containing the IPCs name followed by 0s

 ​function​ getIpcName​(​uint​ _ipcId) ​external​ ​view​ ​returns​ (​bytes32​ result) {

 ​bytes​ ​memory​ nameBytes = ​new​ ​bytes​(​32​);

 Ipc ​storage​ ipc = Ipcs[_ipcId - ​1​];

 ​if​ (​bytes​(ipc.name).length == ​0​) {

 ​return​ ​0x0​;

 }

 ​for​ (​uint​ i = ​0​; i < ​bytes​(ipc.name).length; ++i) {

 nameBytes[i] = ​bytes​(ipc.name)[i];

 }

 ​assembly​ {

 result := ​mload​(​add​(nameBytes, ​32​))

 }

 }

 ​/// @notice Check how much wei an existing IPC costs

 ​/// @dev updates roughly once every ten minutes

 ​/// @param _ipcId The IPC Identifier for the IPC price to look up

50
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 ​/// @return The amount the IPC costs in wei

 ​function​ getIpcPriceInWei​(​uint​ _ipcId) ​external​ ​view​ ​returns​ (​uint​) {

 ​return​ ​_convertCentsToWei​(ipcToMarketInfo[_ipcId].sellPrice);

 }

 ​// ERC721Metadata functions

 ​function​ name​() ​external​ ​pure​ ​returns​ (​string​) {

 ​return​ ​"ImmortalPlayerCharacter"​;

 }

 ​function​ symbol​() ​external​ ​pure​ ​returns​ (​string​) {

 ​return​ ​"IPC"​;

 }

 ​// returns url + IPC as a string

 ​function​ tokenURI​(​uint​ _tokenId) ​external​ ​view​ ​returns​ (​string​) {

 ​uint​ ipcId = _tokenId;

 ​require​ (_tokenId > ​0​ && _tokenId <= totalIpcs);

 ​bytes32​ ipcIdBytes32;

 ​while​(_tokenId > ​0​) {

 ipcIdBytes32 = ​bytes32​(​uint​(ipcIdBytes32) / (​2​ ** ​8​));

 ipcIdBytes32 |= ​bytes32​(((_tokenId % ​10​) + ​48​) * ​2​ ** (​8​ * ​31​));

 ipcId /= ​10​;

 }

 ​bytes​ ​memory​ bytesString = ​new​ ​bytes​(​32​);

 ​for​ (​uint​ i = ​0​; i < ​32​; ++i) {

 byte char = ​byte​(​bytes32​(​uint​(ipcIdBytes32) * ​2​ **(​8​ * i)));

 ​if​ (char != ​0​) {

 bytesString[i] = char;

 }

 }

 ​bytes​ ​memory​ newStringBytes = ​new​ ​bytes​(​bytes​(ipcUrl).length +

bytesString.length);

 ​uint​ counter = ​0​;

 ​for​ (i = ​0​; i < ​bytes​(ipcUrl).length; i++) {

 newStringBytes[counter++] = ​bytes​(ipcUrl)[i];

 }

 ​for​ (i = ​0​; i < bytesString.length; i++) {

 newStringBytes[counter++] = bytesString[i];

51
© 2018 Playchemy Inc.

IPC WhitePaper V1.0 4/​17​/20​1​8

 }

 ​return​ ​string​(newStringBytes);

 }

 ​// ERC165 function

 ​function​ supportsInterface​(​bytes4​ _interfaceId) ​external​ ​view​ ​returns​ (​bool​) {

 ​return​ supportedInterfaces[_interfaceId];

 }

}

52
© 2018 Playchemy Inc.

